【英語版】アルキメデスの原理(性質)と実数の稠密性(証明付き)

2021年12月17日金曜日

数学 数学英語

t f B! P L

The original article I wrote is:

dodgson.hatenablog.com


I'm sorry if the translation is wrong.

If you find any mistakes, please contact me. 

アルキメデスの原理(性質)Archimedean property

For any real number a, b> 0
There exists n ∈ N such that na> b ... ①
It is that.

I will prove it below (simplified version).

証明 Proof:

(* Use contradiction.)
In other words, from ① above,
 it is said that b is not the upper bound of na,
 so b should be regarded as the upper bound of na to lead to a contradiction.

If c is the supremum of na, then na ≤ c… ②.
Therefore, c−a <c, and this c−a is not the upper bound of c.

Therefore, there is something where c−a <na, and c <(n + 1) a.
However, since n + 1 ∈ N, this contradicts ②.

This is complete.

稠密性とは dense

For any real number a, b (where a <b), there exists x ∈ Q that satisfies a <x <b.
It is that.

I will prove it below.

証明 Proof:

* Use the above Archimedean property.

Since a <b, there exists n ∈ N such that b−a> 0 and n (b−a)> 1.

Also, using the properties of Archimedean,
 there exists $m_{1}$,$ m_{2}$ ∈ N that satisfies $m_{1}$> na and $m_{2}$> −na.
Therefore,$ -m_{2}$ <na <$m_{1}$.

Therefore, it is assumed that there exists m that satisfies m-1 ≤ na <m,
 and this m satisfies $−m_{2}$ ≤ m ≤ $m_{1}$.

Therefore, na <m ≤ 1 + na <nb.
* Finally, n (b−a)> 1 was used.

Now divide by n to get a <m / n <b.
If x = m / n, then a <x <b.

This is complete.

おすすめ記事

数学記事まとめです⇩

dodgson.hatenablog.com

このブログを検索

自己紹介

自分の写真
読書と数学が好きな人です。

ブログ アーカイブ

人気の投稿

にほんブログ村

QooQ